Characterizing Flow-Induced Vibrations of Fuel Assemblies for Future Liquid Metal Cooled Nuclear Reactors Using Quasi-Distributed Fibre-Optic Sensors
نویسندگان
چکیده
Excessive vibration of nuclear reactor components, such as the heat exchanger or the fuel assembly should be avoided as these can compromise the lifetime of these components and potentially lead to safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants. However, identifying adequate sensors or techniques that can be successfully applied to record the vibrations of the components in a flow of liquid metal at elevated temperatures is very challenging. In this paper, we demonstrate the precise measurements of the vibrations of a very representative mock-up of a fuel assembly in a lead-bismuth eutectic cooled installation using quasi-distributed fibre Bragg grating (FBG) based sensors. The unique properties of these sensors, in combination with a dedicated integration and mounting approach, allows for accounting of the severe geometrical constraints and allows characterizing the vibration of the fuel assembly elements under nominal operation conditions. To that aim, we instrumented a single fuel pin within the fuel assembly with 84 FBGs, and conducted spectral measurements with an acquisition rate of up to 5000 measurements per second, enabling the monitoring of local strains of a few με. These measurements provide the information required to assess vibration-related safety hazards.
منابع مشابه
Vibration Monitoring Using Fiber Optic Sensors in a Lead-Bismuth Eutectic Cooled Nuclear Fuel Assembly
Excessive fuel assembly vibrations in nuclear reactor cores should be avoided in order not to compromise the lifetime of the assembly and in order to prevent the occurrence of safety hazards. This issue is particularly relevant to new reactor designs that use liquid metal coolants, such as, for example, a molten lead-bismuth eutectic. The flow of molten heavy metal around and through the fuel a...
متن کاملModal Analysis of Spent Fuel Cask for WWER-1000 Reactors
The Spent Fuel Assemblies (SFAs) of WWER-1000 reactors are planned to be transported by special containers which are supposed to be designed in a manner to stand against vibrations and impacts in order to protect the spent fuel from any possible damage. The vibration opposition of these containers shall be far beyond the critical resonance, because the resonances about the natural frequency of ...
متن کاملNumerical simulation of long and slender cylinders vibrating in axial flow applied to the MYRRHA reactor
Flow induced vibrations are an important concern in the design of nuclear reactors. One of the possible designs of the 4th generation nuclear reactors is a lead-cooled fast reactor of which MYYRHA is a prototype. The combination of high liquid density, flow velocity, low pitch-todiameter ratio and the absence of grid spacers makes this design prone to flow induced vibrations. Although most vibr...
متن کاملThe Advanced High-Temperature Reactor: High-Temperature Fuel, Molten Salt Coolant, and Liquid-Metal-Reactor Plant
The Advanced High-Temperature Reactor is a new reactor concept that combines four existing technologies in a new way: (1) coated-particle graphite-matrix nuclear fuels (traditionally used for helium-cooled reactors), (2) Brayton power cycles, (3) passive safety systems and plant designs from liquid-metal-cooled fast reactors, and (4) low-pressure molten-salt coolants with boiling points far abo...
متن کاملFlow Blockage Accident Analysis of Tehran Research Reactor Fuel Assembly
Tehran Research Reactor (T.R.R.) is a pool-type, 5 MW thermal research reactor. One probable event is that if some external objects or debris fall down into the reactor core and cause obstruction of the coolant flow through one of the fuel assemblies, decreasing the surface flow area, ceases the coolant flow, and also raises the fuel and sheaths tempe...
متن کامل